
BIOINFORMATICS Supplementary Information
Pages 1-9

Supplementary Information for Pycellerator: An
arrow-based reaction-like modelling language for
biological simulations
Bruce E Shapiro and Eric Mjolsness

TABLE OF CONTENTS

Installation . S1
File Format . S3
Work Flow . S3
Cellerator Arrows S3
Cascades . S4
User Defined Arrows S4
Representing Fluxes S4
Software Dependencies S4
Software Scaling . S5
Glossary . S5

INSTALLATION

Detailed installation instructions are provided in the user notes,
which is the file pycellerator.pdf. This file is included as part
of the file release on github. This section summarizes the installation
instructions in the on-line documentation. For the most recent
information subsequent to publication of this paper, users should
check the file readme.txt or README.md on github.

1. Download Pycellerator from the Repository. Pycellerator is
available at github. You do not net an account or any special software
to download software from github. The download file is located at:

https://github.com/biomathman/pycellerator/releases.

Look for the file:

install-pycellerator-v-X.zip

(where X is some number) and download that file to your computer.
Advanced users may be more interested in the source but you don’t
need that to run to Pycellerator.

2. Unzip and Create Working Folder. You need to unzip the file
(which will probably be in your Downloads folder). Look for a
folder called pycellerator in that unzipped file. Copy this entire
folder anywhere you want on your disk drive. This is going to be
your working folder for Pycellerator.

3. Install Python 2.7. To use Pycellerator, Python 2.7 and
several Python libraries must be installed on your computer.
Python is free, open source, and available on all major
operating systems. The easiest way to install Python, if you

don’t already have it, is to install a commercial distribution.
Several companies provide free distributions, among them
Anaconda (http://continuum.io/downloads) and Entought Canopy
(https://store.enthought.com/downloads/). You can also get a binary
installer from https://www.Python.org. If you have a Mac, then
Python is already installed on your computer. While we summarize
the installation instructions here, and they may work on your
computer, if you use one of the commercial downloads you
should verify the instructions on the product’s web site to verify
that it is compatible with your operating system and that the
installation instructions have not changed since the publication of
this document.

4. Install Additional Required Python Libraries. The following
additional Python libraries are required for pycellerator: numpy,
scypy, sympy, matplotlib, pyparsing, pulp, libsbml, and
iPython[notebook]. The last three are optional, but some
features will not be available if they are not installed (flux models,
SBML files, or iPython notebooks).

If you are using Anaconda, you can update in the terminal (or
Windows Command prompt.).1 You may not need to upgrade to a
more recent version of pip (the first line below) but you should try
to anyway. If you get a message that says the more recent version is
incompatible and can’t be installed, that is OK. This means pip is
already installed. In this case, just continue with the next install.

python -m pip install --upgrade pip
pip install pyparsing pulp
conda update conda ipython ipython-notebook

iPython-qtconsole numpy
scipy sympy matplotlib

Each conda update can also be typed as a separate command.

If you are running Canopy, you may need to install pip. You may
not need to upgrade to a more recent version of pip (the first
line below), however, but you should try to anyway. If you get a
message that says the more recent version is incompatible and can’t
be installed, that is OK. This means pip is already installed. In this
case, just continue with the next install.

python -m pip install --upgrade pip
pip install --upgrade numpy scipy sympy

matplotlib pyparsing pulp

1 In all the code blocks, indented lines are used to indicate input that should
be typed on a single line of input before hitting the enter key.

c© Oxford University Press 2015. S1

https://github.com/biomathman/pycellerator/releases
http://continuum.io/downloads
https://store.enthought.com/downloads/
https://www.Python.org/

Shapiro and Mjolsness

Each pip install can be typed as a single command

If you install from source, and you are running on Windows, you will
require Microsoft Visual C, which you can get from microsoft at:

https://www.Python.org/downloads/windows

Then download the binaries and upgrade using the windows
command prompt (cmd.exe or powershell) with

python -m pip install --upgrade pip
pip install sympy pulp pyparsing setuptools

numpy scipy matplotlib ipython[notebook]

If you have a Mac, then Python is already installed on your
computer. The base system is pre-installed as part of the Mac
operating system. The base system does not include the numerical
libraries that are also required. To upgrade the Mac using pip, locate
the terminal application in the utilities folder and open it.
Enter

sudo easy_install pip

When requested, enter you password (you must have administrator
access on you Mac). If (when) you are prompted to install XCode
from Apple, click yes, and follow the instructions on any dialog that
follows. When the XCode installation is completed (or if it was not
suggested), open a new terminal session and type in the following.
Hit the enter key after each line and wait for the prompt (the name
of the current working directory) before typing in the next line.

pip install sympy pulp numpy scipy
pyparsing matplotlib iPython[notebook]

Each pip install can also be typed as a separate command. If
you have a virtual operating system like Parallels Desktop installed
on your computer, make sure that Safari (or some other web browser
such as Firefox or Chrome) is set as your default browser, and not
Parallels. Otherwise iPython will try to open your virtual operating
system every time it runs Python.

If you are running on linux, you can install a base Python system
from your package manager, download binaries from python.org,
build from source (also available at python.org), or use one of
the commercial systems. Pycellerator requires Python 2.7.X but is
not compatible with Python 3.X. The standard Python installation
includes its own package manage called pip. If you install the base
system from python.org this should automatically be installed for
you. Otherwise, you also install pip from your package manager.
This allows you to bypass your package manager when updating
Python. To upgrade to the latest version of pip,

python -m pip install --upgrade pip

To add any missing packages to Python,

pip install packagename

To upgrade to the latest version of any package,

pip install --upgrade package

To add the missing pakages, .

pip install pyparsing pulp
sympy numpy scipy matplotlib

Binary installers and source code versions are also available for each
of these packages.

5. Install libSBML. If you want to work with SBML files, you will
also need to install a version of libSBML that is appropriate for your
operating system. Make sure to install a version that is compatible
with Python.

Follow the instructions at http://sbml.org/Software/libSBML to find
the appropriate binary installer for your operating system.

You do not have to have libSBML installed if you do not plan
on using SBML files. If libSBML is not installed, all non-SBML
related functionality of Pycellerator will be unaffected.

To Install on Ubuntu Linux. If you are primarily interested in using
Python with libSBML but not with other languages, this procedure
is given by the SBML project. (See http://sourceforge.net/projects/sb
ml/files/libsbml/5.11.6-experimental/binaries/Linux/)2 You should
check there for the latest information. To install the prerequisites,

sudo apt-get install python-dev libxml2-dev
libz-dev libbz2-dev

Then to install libSBML,

sudo pip install python-libsbml

If you are using Windows, download the latest binary installers can
be found at3: http://sourceforge.net/projects/sbml/files/libsbml/5.11.
4/stable/Windows/64-bit/Python/. These installers will only install
libSBML for Python, and not for other languages.

If you are using a mac the latest binaries can be found at4

http://sourceforge.net/projects/sbml/ files/libsbml/5.11.4/stable/Ma
c%20OS%20X/. According to the instructions on the repository
web page, the installation procedure similar to that for linux.

6. Quick Start Installation Check If you have a complete and correct
installation, the following commands should get you up and running
immediately with pycellerator.

To verify that the Command Line Interface works, open the terminal
from inside the pycellerator folder, and type the following:

2 As of 5 Sept 2015.
3 As of 5 Sept 2015.
4 As of 5 Sept 2015.

S2

https://www.Python.org/downloads/windows
python.org
python.org
python.org
http://sbml.org/Software/libSBML
http://sourceforge.net/projects/sbml/files/libsbml/5.11.6-experimental/binaries/Linux/
http://sourceforge.net/projects/sbml/files/libsbml/5.11.6-experimental/binaries/Linux/
http://sourceforge.net/projects/sbml/files/libsbml/5.11.4/stable/Windows/64-bit/Python/
http://sourceforge.net/projects/sbml/files/libsbml/5.11.4/stable/Windows/64-bit/Python/
http://sourceforge.net/projects/sbml/files/libsbml/5.11.4/stable/Mac%20OS%20X/
http://sourceforge.net/projects/sbml/files/libsbml/5.11.4/stable/Mac%20OS%20X/

Pycellerator Supplementary Information

python pycellerator.py solve -in Gold1.model
-plot

For a quick tutorial of the iPython notebook, type the following into
the terminal:

iPython notebook

Navigate to the notebook demo.ipynb and open it.

FILE FORMAT

The model is standard text file (e.g., ASCII or UTF-16) that can (and
should) be user-modifed with any desired code editor. It consists of
a list of text-formatted reactions. An example is shown in Figure
S1. Nominally (for easier reading), each reaction should be written
on a single line, but multi-line reactions are permitted. The file is
divided into multiple sections with special keywords representing
the names of the sections. The $ symbol precedes each keyword.
Example keywords are $REACTIONS, which precede the list of
reactions; $RATES which precedes a list of values of rate constants;
$IC, which preceds a list of intial conditions; $FUNCTIONS, which
precedes a list of user defined functions that are used by the model.
The sections may be specified in any order, and the contents of each
section may also be specified in any order.

$REACTIONS
-------- Phosphorylation Cascade
[K3 => K3p, mod[S], rates[a1,d1,k1]]
[K2 => K2p =>K2pp, mod[K3p], rates[a3,d3,k3]]
[K => Kp => Kpp, mod[K2pp], rates[a3,d3,k3]]

-------- Competitive inhibition
[K3_S + Kpp <-> K3_S_Kpp, rates[a7, d7]]

-------- Dephosphorylation Cascade
[K3p => K3, mod[K3PH], rates[a4,d4,k4]]
[K2pp => K2p => K2, mod[K2PH], rates[a5,d5,k5]]
[Kpp => Kp => K, mod[KPH], rates[a6,d6,k6]]

-------- Stimulation
[Nil<->S, rates["a0*fon(t)*foff(t)", d0]]

$Functions
foff(t)=(1-.5*(1+(t-stim_stop)/(1+(t-stim_stop)**2)**.5))
fon(t)=0.5+0.5*(1+t-stim_start)/(1+(t-stim_start)**2)**.5

$IC
S=1; K3=100; K3p=0; K2=300; K2p=0; K2pp=0
K=300; Kp=0; Kpp=0; KPH =1; K2PH =1; K3PH=10

$Rates
a0=1; a1=1; a3=1; a5=1; a4=1; a6=1; a7=1;
d0=0.01; d1=7.5; d3=10;d4=1; d5=1; d6=1; d7=1;
k1=2.5; k3=0.025; k4=1; k5=1; k6=1;
t_start=750; t_stop=6000

1Fig. S1. Sample input file. Sections are delimited with the “$”, lines may be
separated with either newlines or semicolons, and comments begin with “#”.
The functions fon(t) = (1/2)(1 + (1 + t − tstart)/(

√
1 + (t− tstart)2))

and foff(t) = 1− (1/2)(1 + (t− tstop)/
√

1 + (t− tstop)2 are sigmoidal
functions that turn the stimulation on at ton and off at toff, approximating a
differentiable step function.

WORK FLOW

The standard way of representing a model is by a model file, but
models may also be represented by either legacy (Mathematica)
Cellerator files, or as SBML model files. As illustrated in figure
S2, built in functions will convert these files to readable model files.
Once a model file has been created, it can be

• Read and converted to a system of differential equations
(interpreter module);

• Read and converted to an ODE-based Python computer
program (solver module);

• Read and converted to a Flux-based Python computer program
(flux module, not shown); flux models and ODE models are
mutually exclusive;

• The code may be run (solver module);

• Time courses may be plotted.

• Parametric scans may be run and plotted.

Legacy Model
TextArrow

ToMathematica

SBML

Text Model File

GenerateSBML

ConvertSBML

Solver
(Python
Code)

ODE’s

interpret

Solve

pyparsing
sympy

numpy, scipy

np.array

csv,text filespyplot plots

data
analysis

Fig. S2. Overall work flow for Cellerator using iPython.

STANDARD CELLERATOR ARROWS

All functionality is preserved in the Python implementation,
however, the syntax has been changed. The major changes are
summarized as follows.

• Arrows are all expressible in standard typewriter characters
(e.g., ASCII) so that an interpreter (such as Mathematica) is
not required to read and translate the model file. For the most
part, the correspondences are as given in table S1.

• The use of overscripts and underscripts has been removed in
the new format. In the legacy format modifier species, species
whose concentrations are not affected by a reaction, but whose
presence affect the outcome of a reaction in their kinetic law,
were written either above or below the reaction arrow, as in

{A
X

� B, k1, k2, k3, k4} (1)

They are now moved within a function mod, as in

[A => B, mod[X], rates[k1, k2, k3, k4]] (2)

Reactions (1) and (2) represent the same reaction in the old and
new formats, respectively.

S3

Shapiro and Mjolsness

• Rate constants are encapsulated within a function rates at the
end of the arrow, as in reaction (2).

• The usage of curly braces (as in{expression}) in the
Mathematica form has been replaced with square brackets as
in [expression]) to maintain consistency with the Python
list implementation.

Supplementary Table S2 illustrates the syntactical differences
between mass action arrows as implemented in the Mathematica
code and in the Python code. The differences in other arrows are
summarized in Supplementary Table S3.

Table S1. Comparison of text and legacy arrows.

Legacy Text Typical usages

→ -> Mass action, User defined
→ --> Catalytic Mass action
↔ <-> Bi-directional mass action
� => Enzymatic with intermediate complex

formation

 :=> Enzymatic with two intermediate

complexes
� <=> Bi-directinal enzymatic with single

intermediate complex formation
7→ |-> Hill, GRN, S-System, NHCA, User
7→ |--> Catalyzed Hill, GRN, S-System, User
⇒ :-> Michaeles-Menten-Henri (MMH)
⇒ :--> Catalyzed MMH
=⇒ ==> MWC, Rational

CASCADES

Any mass action, catalytic mass action, MMH, Hill Function, GRN,
S-System, or NHCA reaction can be written in a cascade as a single
reaction. A cascade is defined as sequence of repeated reactions
with the same arrow and the same rate constants. For example, the
reactions

[A => B, mod[E], rates[k1,k2,k3]]
[B => C, mod[F], rates[k1,k2,k3]]
[C => D, mod[G], rates[k1,k2,k3]]

can be written as a single reaction cascade:

[A => B => C => D, mod[E, F, G],
rates[k1,k2,k3]]

Reactions without modifiers can also be written as cascades:

[P :-> Q :-> R, MMH[KD, v]]

which represents the pair of reactions

[P :-> Q, MMH[KD, v]]
[Q :-> R, MMH[KD, v]]

USER DEFINED ARROWS

Two types of user defined reactions are possible. The first user-
defined reaction is expressed as

[e1 * X1 + e2 * X2 + · · · ->
f1 * Y1 + f2 * Y2 + · · · using[expr]]

where expr is any valid Python expression enclosed in quotes.
(Note that the subscripts are not valid in Python and are merely
used here for illustrative purposes.) The second type of user defined
reaction is

[X1 + X2 + · · · |->Y,
USER[v, [T1, T2, . . .], [n1, n2, . . .], h, f]]

where f is a function defined in the model and the differential
equation term is computed as

dY

dt
= vf(h−

∑
TiX

ni
i) (3)

REPRESENTING FLUXES

A flux arrow is represented by the form

[LHS -> RHS, Flux[low < id < up, obj, flux]

The formats are analogous to COBRA fluxes: low and hi
correspond to upper and lower bounds; id is an identifier in the
model; obj is an objective coefficient; and flux is a flux value.
Equality constraints are obtained by setting low and hi to the same
value. Flux optimization maximizes the dot product vTf subject to
Nv = 0 and all the supplied constraints, where v is the vector of
fluxes, N is the stoichiometry matrix, and f is the vector of objective
coefficients. A model may be composed either entirely of standard
arrows or entirely of flux arrows, but they may not be combined.

SOFTWARE DEPENDENCIES

Cellerator utilizes standard Python 2.7 libraries. It assumes that
the following additional Python libraries are also installed: numpy,
scipy (numerical and scientific Python libraries), pyparsing (a BNF
based parser), and matplotlib (plotting library). To process flux
models, the pulp (linear programming) library is required, and to
read or write SBML models, libSBML is required. If either pulp or
libsbml are not available the rest of the program should still work.
In addition to a full iPython notebook installation, if you wish to

S4

Pycellerator Supplementary Information

Fig. S3. Scaling of the code generation algorithm. The markers show the
time taken to generate (and save to disk) stand-alone Python solvers from
randomly generated models of the given size.

export iPython notebooks to other formats such as html or LATEX, the
Python pandoc document conversion library is also required. The
stand-alone code generated by Cellerator depends only on numpy
and scipy.

SCALING OF CODE GENERATION ALGORITHM

The automated code generation algorithm scales linearly with
the number of reactions. This was determined by generating
random models (with random reactions and random values for rate
constants) containing up to approximately 300,000 reactions ad
measuring the compute time on an Intel Core i7-3770K CPU with
32MB memory running Ubuntu 14.10. Models contained either
mass-action reactions or GRN reactions. Mass-action reactions were
randomly generated with the form

Xi +Xj
kq→

∑
p∈Pq

Xp (4)

so that every species interacted, on average, with approximately
50% of the other species in any given model. The set of products
Pq was randomly chosen for each reaction, with a maximum size of
5 species. The GRN reactions were also randomly generated, and of
the form ∑

w∈Wq

Xw 7→ Xv (5)

where Wq would contain up to seven species, randomly chosen
for each reaction, e.g., representing various various transcription
factors or upstream proteins that control the transcription of Xv .

All rate constants (kq for the mass action reactions, and the T , h,
and exponent values for the GRN) were randomly assigned. The
results show a linear scaling over the range of model sizes tested, as
illustrated in fig. S3.

GLOSSARY

ASCII - American Standard Code for Information Interchange,
an old seven bit text-encoding format derived from telegraphic
standards, which has generally been replaced by UTF-8.

API - Application Program Interface. In this case, it refers to a
set of function calls that can be used to access the individual low
level capabilities of Pycellerator directly via calls from other Python
programs.

BDF - Backward Differentiation Formula. One of the families of
techniques in which a differential equation is solved numerically.
It solves the differential equation y′ = f(t, y) (y is a vector) by
solving a system of linear equations

N∑
k=0

akyn+k = hAf(tn+N , yn+N)

for some fixed step size h, order N , and constants a0,.., aN and A.
for the yj . Since the equations are implicit in yj , an iterative solver
is usually used.

BNF - Backus-Naur Form or Backus-Normal Form, a notation used
to describe context free grammars. Both names are used; Peter Naur
invented the second, while Donald Knuth invented the first. BNF is
a meta-language used to describe computer languages. the typical
syntax, e.g., to describe the addition operation A+B as a single term
or the sum of terms containing integers or symbols,

<term> ::<integer>|<symbol>
<expression>::=term>|<expression>"+"<term>
<integer> :: ... etc

Cellerator - (1) Cellerator is a Mathematica package designed
to facilitate biological modeling via automated equation generation.
Cellerator was designed with the intent of simulating at least
the following essential biological processes: signal transduction
networks (STNs); cells that are represented by interacting
signal transduction networks; and multi-cellular tissues that are
represented by interacting networks of cells that may themselves
contain internal STNs. See http://bioinformatics.oxfordjournals.org/
content/19/5/677.abstract. (2) Cellerator is also the name of
a Python include file that is part of the iPython interface for
Pycellerator, which acts as a high-level interface between iPython
and the Pycellerator libraries.

Cellzilla - Cellzilla is a two-dimensional tissue simulation
platform for plant modeling utilizing Cellerator arrows. See
http://journal.frontiersin.org/article/ 10.3389/ fpls.2013.00408/

S5

http://bioinformatics.oxfordjournals.org/content/19/5/677.abstract
http://bioinformatics.oxfordjournals.org/content/19/5/677.abstract
http://journal.frontiersin.org/article/10.3389/fpls.2013.00408/abstract

Shapiro and Mjolsness

CLI - Command Line Interface. In this case, it refers to the
ability to execute Pycellerator via commands typed into the terminal
application (in linux or Mac OS; called the Command Prompt in
Windows, cmd.exe, or powershell).

Conda - conda is a software management system for Python. It is
used by the Anaconda Python system. It lets you install, update
and configure software under the Anaconda Python distribution. For
more information see http://conda.pydata.org/docs/.

eval - eval is a Python function that evaluates a string as if it were
a line of code.

GPL - Acronym for GNU General Public License, a copyleft
software license that allows users the freedoms to run, study, share
(copy), and modify the software subject to the conditions of the
license. For more information see http://www.gnu.org/licenses/gpl
.html.

GRN - Acronym for Gene Regulatory Network reaction. In
Pycellerator, this refers to a reaction A + B + C + · · · → X in
which the concentrations of A, B, and C are not affected, but in
which X changes by the logistic function

X ′ =
v

1 + e−h−β1A
n
1−β2B

n
2 −β3C

n
3 −···

for some fixed constants h, v, β1, β2,.. , n1, n2,..

iPython - an interactive computational environment, in which you
can combine code (Python), code output, markdown, and graphics.
For more information see http://iPython.org/notebook.html

Jupyter - A web application designed to share visualizations. It is
used by the iPython notebook environment. For more information
see https://jupyter.org/

KMech - an enzyme mechanism language for the mathematical
modeling of metabolic pathways, implemented in Mathematica
using Cellerator. It has been completely re-implemented in the
present paper as part of Pycellerator. For more information on the
original KMech see http://bioinformatics.oxfordjournals.org/content
/21/6/774.abstract

LSODA - A library to solve differential equations. LSODA solves
systems dy/dt = f automatically selects between nonstiff (Adams)
and stiff (BDF) methods, using a nonstiff method initially, and
dynamically monitoring data to decide which method to use. For
more information see https://people.sc.fsu.edu/ jburkardt/f77 src
/odepack/odepack.html

matplotlib - A 2D plotting library for Python. For more information
see http://matplotlib.org

MMH - An acronym for Michaelis-Menten-Henri Kinetics.
Catalyzed conversion of a substrate S into a product P , described
by, e.g.,

S + E
k1
�
k2

SE
k3→P + E

Under certain conditions, the rate of the reaction is

P′ =
k3A
K + A

where

K =
k2 + k3
k1

MWC - Acronym for Monod-Wyman-Changeaux model for
allosteric transitions. For more details see http://www.worldscientifi
c.com/doi/abs/ 10.1142/S0219720006001862

numpy - numpy is the standard numerical computing package for
Python. For more information see http://www.numpy.org/

odeint - scipy.integrate.odeint is the standard solver for
differential equations in Python. For more information see
http://docs.scipy.org/doc/scipy/reference/generated/scipy. integrate.
odeint.html

pip - pip is the Python package manager. It is used to install, update,
or remove parts of your Python installation.

pulp - pulp is a linear programming library for Python. For more
information see https://github.com/coin-or/pulp

pyparsing - pyparsing is a parsing library for Python. http://sourcef
orge.net/projects/pyparsing/

SBML - An acronym for Systems Biology Modeling Language: “a
free and open interchange format for computer models of biological
processes. SBML is useful for models of metabolism, cell signaling,
and more.” http://sbml.org

scipy - scipy is a collection of Python libraries, including one
named scipy, for scientific computing in Python. Other libraries
used by Pycellerator, such as numpy and matplotlib, are
considered part of the “scipy stack.” See http://www.scipy.org/

sudo - sudo is a unix-like command that means “do like su”, where
su is short for “superuser” or administrator. It gives the command
administrator privilege.

sympy - sympy is a Python library for computer algebra. More details
are at http://www.sympy.org/en/

UTF-16 - A standard 16 bit character encoding for text files.

S6

http://conda.pydata.org/docs/
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://iPython.org/notebook.html
https://jupyter.org/
http://bioinformatics.oxfordjournals.org/content/21/6/774.abstract
http://bioinformatics.oxfordjournals.org/content/21/6/774.abstract
https://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html
https://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html
http://matplotlib.org
http://www.worldscientific.com/doi/abs/10.1142/S0219720006001862
http://www.worldscientific.com/doi/abs/10.1142/S0219720006001862
http://www.numpy.org/
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://github.com/coin-or/pulp
http://sourceforge.net/projects/pyparsing/
http://sourceforge.net/projects/pyparsing/
http://sbml.org
http://www.scipy.org/
http://www.sympy.org/en/

Pycellerator Supplementary Information

Table S2. Comparison of Python text arrow formats with legacy arrow formats as displayed in the Mathematica notebook front end processor.

Cellerator Arrow in Python Text Formata,b Typical Typical ODE Term
Mathematica Notebook Biochemical or Expansion

(1) {X → Y, k} [X -> Y, k] X k→ Y Y ′ = −X′ = kX

(2)
{e1X1+e2X2+· · · →
f1Y1+f2Y2+· · ·, k}

[e1∗X1+e2∗X2+· · ·->
f1∗Y1+s2∗Y2+· · ·,k]

∑
i eiXi

k→
∑
j fjYj U ′m = k(fUm − eUm)

∏
lhsX

ei
i

(3) {e1X1+e2X2 + · · · M→
f1Y1+f2Y2 + · · ·, k}

[e1X1+e2X2+· · ·-->
f1Y1+f2Y2+· · ·,
mod[M], k]

M +
∑
i eiXi

k→
M +

∑
j fjYj

U ′m = kM(fUm − eUm)
∏
lhsX

ei
i

(4)
{e1X1+e2X2+· · · �

f1Y1+f2Y2+ · · ·,
k1, k2}

[e1X1+e2X2+· · ·<->
f1Y1+f2Y2+· · ·,
rates[k1,k2]]

∑
i eiXi

k1
�
k2

∑
j fjYj

Expands to two arrows
of the form (2)

(5) {S
E
� P,

k1,k2,k3,k4 }

[S=>P,mod[E],
rates[k1,k2,
k3,k4]]

S + E
k1
�
k2

SE
k3
�
k4

P + E

or: S + E
k1→ SE

SE
k2→ S + E

SE
k3→ P + E

P + E
k4→ PE

Expands into four arrows:

[S+E->S E,k1]
[S E->S+E,k2]
[S E->P+E,k3]
[P+E->S E,k4]

(6)
{S

F
�
R

P,

k1,k2,k3,k4,
k5,k6,k7,k8}

[S<=>P,mod[F,R],
rates[k1,k2,
k3,k4,k5,
k6,k7,k8]]

S + F
k1
�
k2

SF
k3
�
k4

P + F

P + R
k5
�
k6

PR
k7
�
k8

S + R

or:

S + F
k1→ SF SF

k2→ S + F

SF
k3→ P + F P+F

k4→ SF

P + R
k5→ PR PR

k6→ P + R

PR
k7→ S + R S+R

k8→ SR

Expands into two arrows of type (5)
thence 8 arrows type (2):
[S=>P, mod[F],

rates[k1,k2,k3,k4]]
[P=>S, mod[R],

rates[k5,k6,k7,k8]]
and thence:
[S+F->S F,k1], [S F->S+F,k2]
[S F->P+F,k3], [P+F->S F,k4]
[P+R->P R,k5], [P R->P+R,k6]
[P R->S+R,k7], [S+R->P R,k8]

(7)
{S

E

 P,

k1,k2,k3,
k4,k5,k6 }

S:=>P,mod[E],
rates[k1,k2,k3,
k4,k5,k6]]

S + E
k1
�
k2

SE
k3
�
k4

PE
k5
�
k6

P + E

or:

S + E
k1→ SE SE

k2→ S + E

SE
k3→ PE PE

k4→ SE

PE
k5→ P + E P + E

k6→ PE

Expands to 6 arrows type (2):
[S+E->S E,k1] [S E->S+E,k2]
[S E->P E k3] [P E->S E,k4]
[P E->P+E,k5] [P+E->P E,k6]

aSubscripts are for illustrative purposes only; subscripts are not possible in the text format. bThe asterisk (*) between stoichiometry and species is not required when the stoichiometry
is a literal number.

S7

Shapiro and Mjolsness

Table S3. Comparison of Cellerator arrows in Python text format and legacy mathematica format.

Legacy Arrows Text Arrows ODE Terms

Michaelis-Menten-Henri Type Reactions (MMH)

{A⇒B,MM[Kv]}
{A⇒B,MM[k1,k2,k3]}
{A X⇒B,MM[K,v]}
{A X⇒B,MM[k1,k2,k3]}

[A:->B,MMH[K, v]]
[A:->B,MMH[k1,k2,k3]]
[A:->B,mod[X],MMH[K, v]]
[A:->B,mod[X],MMH[k1,k2,k3]]

B′ = −A′ =
vA

K+ A

B′ = −A′ =
k3A

(k2 + k3)/k1 + A

B′ = −A′ =
vAX

K+ A

B′ = −A′ =
k3AX

(k2 + k3)/k1 + A

Hill Functions

{A7→B,Hill[v,n,K,a,T]}
{{P1,P2,..}7→Q,Hill[v,n,K,a,

{T1,T2,..}]}
{{X1,X2,..}

E7→Y,Hill[v,n,K,a,
{T1,T2,..}]}

[A|->B,Hill[v,n,K,a,T]]
[[P1,P2,..]|->Q,Hill[v,n,K,a,

[T1,T2,..]]]
[[X1,X2,..]|-->Y,mod[E],Hill[v,

n,K,a,[T1,T2,..]]]

B′ =
v(a+ TA)n

Kn + (a+ TA)n
; A′ = 0

Q′ =
v(a+

∑
TjPj)n

Kn + (a+
∑

TjPj)n
; P′j = 0

Y′ =
vE(a+

∑
TjXj)n

Kn + (a+
∑

TjXj)n
= −X′i

Gene Regulatory Network (GRN, Logistic) Arrows

{A7→B,GRN[v,T,n,h]}
{{P1,P2,..}7→Q,GRN[v,{T1,..},n,h]}
{{X1,X2,..}

E7→Y,GRN[v,{T1,..},n,h]}

[A|->B,GRN[v,T,n,h]]
[[P1,..]|->Q,GRN[v,[T,..],n,h]]
[[X1,..]|-->Y,mod[E],GRN[v,

[T,..],n,h]]

B′ =
v

1+ e−(h+TAn)
; A′ = 0

Q′ =
v

1+ e
−(h+

∑
TjP

n
j)

; P′i = 0

Y′ =
vE

1+ e
−(h+

∑
TjX

n
j)

; X′i = 0

S-Systems
{{S1,S2,..}7→P,SSystem[τ,a,b,

{g1,g2,..},{h1,..}]}
[[S1,..]|->P,SSystem[tau,a,b,

[g1,..],[h1,..]]
P′ =

1

τ

(
a
∏

i S
gi
i − b

∏
i S

hi
i

)
Rational Functions

{{{X1,X2,..},{Y1,Y2,..}} =⇒ Z,
rational[{a0,..},{d0,..},

{m1,..},{n1,..}]}

[[[X1,..],[Y1,..]]==>Z,rational[
[a,..],[d,..],[m,..],[n,..]]]

[[[X11*X12 ∗ · · ·,X21*X22 ∗ · · ·,..],
[Y11*Y12*· · ·,Y21*Y22*· · ·,..]]
==>Z,rational[[a,..],[d,..],
[m,..],[n,..]]]

Z′ =
a
m0
0 +

∑
i aiX

mi
i

d
m0
0 +

∑
i diY

ni
i

Z′ =
a
m0
0 +

∑
i ai(Xi1Xi2 · · ·)mi

d
m0
0 +

∑
i di(Yi1Yi2 · · ·)ni

Monod-Wyman-Changeaux Type Reactions (MWC)

{S E
=⇒ P,MWC[k,n,c,L,K]}

{S E
=⇒ P,

{{A1,..},{I1,..}}
MWC[k,n,c,L,K]}

{S E
=⇒ P,

{{A1,.},{I1,..},{{C1,.},.},.}
MWC[k,n,c,L,K,..]}

[S==>P,mod[E],MWC[k,n,c,L,K]]
[[S1..]==>P,mod[E,[A1..],[I1,..]],

MWC[k,n,c,L,K]]
[[S1,..]==>P,mod[E,[A1,..],[I1,..],

[[C1],..]], MWC[k,n,c,L,K]]

Let c = S/K

P′ = S′ =

E
s (1+ s)n−1 + Lsc (1+ sc)n−1

(1+ s)n + L (1+ sc)n−1

P′ = S′ = E
∏

(1+ ajaj)n
∏

sj
∏

(1+ sj + sj)n−1 + L
∏

(1+ ij)n
∏

(csj)
∏

(1+ csj + sj)n−1∏
(1+ aj + aj)n

∏
(1+ sj)n + L

∏
(1+ ij)n

∏
(1+ csj + sj)n−1

where: sj = Sj/KSj , aj = Aj/KAj , ij = Ij/KIj , sj = c
∑

k Cjk

/
KCjk

, aj = c
∑

k Cjk

/
KCAjk

User Defined Arrows

A7→B,USER[v,T,n,h,f]
{P1,P2,..}7→Q,USER[v,

{T1,..},{n1,..},h,f]

[A|->B,USER[v,T,n,h,f]]
[[P1,P2,..]|->Q,USER[v,

[T,..],[n,..],h,f]]
[[X1,X2,..]|->Y,mod[E],USER[v,

[T,..],[n,..],h,f]]†

[s1*A1+s2*A2+· · ·->q1*A1+q2*A2+· · ·,
using[expr]]†,‡

B′ = vf(h− TAn)
Q′ = vf(h−

∑
i TiP

ni
i)

Y′ = vEf(h−
∑

i TiX
ni
i)

A′i = (qi − si)× (expr)

†Only implemented in Python version. ‡expr is any Python expression.

S8

Pycellerator Supplementary Information

import numpy as np

from scipy.integrate import odeint

from math import *

foff = lambda t :-0.5*(t - 6000.0)*((t - 6000.0)**2 + 1)**(-0.5) + 0.5

fon = lambda t :(0.5*t - 374.5)*((t - 750.0)**2 + 1)**(-0.5) + 0.5

def ode_function_rhs(y,t):

#

this odeint(..) compatible function was

automatically generated by Cellerator 2015-04-25 15:45:11

2.7.8 (default, Oct 20 2014, 15:05:19) [GCC 4.9.1]

linux2

#

===

Model:

#

#

Phosphorylation Cascade

#

[K3 => K3p, mod[S], rates[a1,d1,k1]]

[K2 => K2p =>K2pp, mod[K3p], rates[a3,d3,k3]]

[K => Kp => Kpp, mod[K2pp], rates[a3,d3,k3]]

#

competitive inhibition

#

[K3_S + Kpp <-> K3_S_Kpp, rates[a7, d7]]

#

Dephosphorylation Cascade

#

[K3p => K3, mod[K3PH], rates[a4,d4,k4]]

[K2pp => K2p => K2, mod[K2PH], rates[a5,d5,k5]]

[Kpp => Kp => K, mod[KPH], rates[a6,d6,k6]]

#

Input Signal

#

[Nil<->S, rates["a0*fon(t)*foff(t)", d0]]

===

rate constants

a0 = 1.0

a1 = 1.0

a3 = 1.0

a4 = 1.0

a5 = 1.0

a6 = 1.0

a7 = 1.0

d0 = 0.01

d1 = 7.5

d3 = 10.0

d4 = 1.0

d5 = 1.0

d6 = 1.0

d7 = 1.0

k1 = 2.5

k3 = 0.025

k4 = 1.0

k5 = 1.0

k6 = 1.0

stim_start = 750.0

stim_stop = 6000.0

pick up values from previous iteration

K2p_K3p = max(0, y[0])

K2p = max(0, y[1])

K_K2pp = max(0, y[2])

K3 = max(0, y[3])

K2 = max(0, y[4])

K2p_K2PH = max(0, y[5])

K3p_K3PH = max(0, y[6])

K3_S = max(0, y[7])

K2pp = max(0, y[8])

Kp_K2pp = max(0, y[9])

Kp_KPH = max(0, y[10])

Kpp = max(0, y[11])

K3p = max(0, y[12])

K = max(0, y[13])

S = max(0, y[14])

Kp = max(0, y[15])

KPH = max(0, y[16])

K3_S_Kpp = max(0, y[17])

Kpp_KPH = max(0, y[18])

K2_K3p = max(0, y[19])

K2PH = max(0, y[20])

K2pp_K2PH = max(0, y[21])

K3PH = max(0, y[22])

calculate derivatives of all variables

yp=[0 for i in range(23)]

yp[0] = K2p*K3p*a3 - K2p_K3p*d3 - K2p_K3p*k3

yp[1] = -K2PH*K2p*a5 + K2_K3p*k3 - K2p*K3p*a3 + K2p_K2PH*d5 +

K2p_K3p*d3 + K2pp_K2PH*k5

yp[2] = K*K2pp*a3 - K_K2pp*d3 - K_K2pp*k3

yp[3] = -K3*S*a1 + K3_S*d1 + K3p_K3PH*k4

yp[4] = -K2*K3p*a3 + K2_K3p*d3 + K2p_K2PH*k5

yp[5] = K2PH*K2p*a5 - K2p_K2PH*d5 - K2p_K2PH*k5

yp[6] = K3PH*K3p*a4 - K3p_K3PH*d4 - K3p_K3PH*k4

yp[7] = K3*S*a1 - K3_S*Kpp*a7 - K3_S*d1 - K3_S*k1 + K3_S_Kpp*d7

yp[8] = -K*K2pp*a3 - K2PH*K2pp*a5 + K2p_K3p*k3 - K2pp*Kp*a3 +

K2pp_K2PH*d5 + K_K2pp*d3 + K_K2pp*k3 + Kp_K2pp*d3 + Kp_K2pp*k3

yp[9] = K2pp*Kp*a3 - Kp_K2pp*d3 - Kp_K2pp*k3

yp[10] = KPH*Kp*a6 - Kp_KPH*d6 - Kp_KPH*k6

yp[11] = -K3_S*Kpp*a7 + K3_S_Kpp*d7 - KPH*Kpp*a6 + Kp_K2pp*k3 +

Kpp_KPH*d6

yp[12] = -K2*K3p*a3 + K2_K3p*d3 + K2_K3p*k3 - K2p*K3p*a3 + K2p_K3p*d3

+ K2p_K3p*k3 - K3PH*K3p*a4 + K3_S*k1 + K3p_K3PH*d4

yp[13] = -K*K2pp*a3 + K_K2pp*d3 + Kp_KPH*k6

yp[14] = -K3*S*a1 + K3_S*d1 + K3_S*k1 - S*d0 + a0*foff(t)*fon(t)

yp[15] = -K2pp*Kp*a3 - KPH*Kp*a6 + K_K2pp*k3 + Kp_K2pp*d3 + Kp_KPH*d6

+ Kpp_KPH*k6

yp[16] = -KPH*Kp*a6 - KPH*Kpp*a6 + Kp_KPH*d6 + Kp_KPH*k6 + Kpp_KPH*d6

+ Kpp_KPH*k6

yp[17] = K3_S*Kpp*a7 - K3_S_Kpp*d7

yp[18] = KPH*Kpp*a6 - Kpp_KPH*d6 - Kpp_KPH*k6

yp[19] = K2*K3p*a3 - K2_K3p*d3 - K2_K3p*k3

yp[20] = -K2PH*K2p*a5 - K2PH*K2pp*a5 + K2p_K2PH*d5 + K2p_K2PH*k5 +

K2pp_K2PH*d5 + K2pp_K2PH*k5

yp[21] = K2PH*K2pp*a5 - K2pp_K2PH*d5 - K2pp_K2PH*k5

yp[22] = -K3PH*K3p*a4 + K3p_K3PH*d4 + K3p_K3PH*k4

return yp

def thesolver():

filename ="/home/mathman/Desktop/ipypaper/MAPK/MAPK.model"

variables=[’K2p_K3p’, ’K2p’, ’K_K2pp’, ’K3’, ’K2’, ’K2p_K2PH’,

’K3p_K3PH’, ’K3_S’, ’K2pp’, ’Kp_K2pp’, ’Kp_KPH’, ’Kpp’, ’K3p’,

’K’, ’S’, ’Kp’, ’KPH’, ’K3_S_Kpp’, ’Kpp_KPH’, ’K2_K3p’, ’K2PH’,

’K2pp_K2PH’, ’K3PH’]

runtime = 12000

stepsize = 10

t = np.arange(0,runtime+stepsize,stepsize)

y0 = [’0’, 0.0, ’0’, 100.0, 300.0, ’0’, ’0’, ’0’, 0.0, ’0’, ’0’,

0.0, 0.0, 300.0, 1.0, 0.0, 1.0, ’0’, ’0’, ’0’, 1.0, ’0’, 10.0]

sol = odeint(ode_function_rhs, y0, t, mxstep=50000)

return sol

if __name__=="__main__":

thesolver()

1Fig. S4. Auto-generated code for the model shown in fig. 1 of the main text of the article. The only dependencies of this code are numpy and scipy; the user
could hypothetically run this program from the command line, e.g, as Python mysolver.py, by integrating the code into another program, or using it in
iPython.

S9

